Меню

Энциклопедия продуктов их витамины

Витамины

низкомолекулярные органические соединения различной химической природы, абсолютно необходимые для нормальной жизнедеятельности организмов. Являются незаменимыми пищевыми веществами, т.к. за исключением никотиновой кислоты они не синтезируются организмом человека и поступают главным образом в составе продуктов питания. Некоторые В. могут продуцироваться нормальной микрофлорой кишечника. В отличие от всех других жизненно важных пищевых веществ (незаменимых аминокислот, полиненасыщенных жирных кислот и т.д.) В. не обладают пластическими свойствами и не используются организмом в качестве источника энергии. Участвуя в разнообразных химических превращениях, они оказывают регулирующее влияние на обмен веществ и тем самым обеспечивают нормальное течение практически всех биохимических и физиологических процессов в организме.

Известно 13 незаменимых пищевых веществ, которые безусловно являются витаминами (табл. 1). Их принято делить на водорастворимые и жирорастворимые. Водорастворимые В включают витамин С и витамины группы В: тиамин, рибофлавин, пантотеновую кислоту, В6, В12, ниацин, фолат и биотин, Жирорастворимыми являются витамины А, Е, D и К. Большинство известных В. представлено не одним, а несколькими соединениями (витамерами), обладающими сходной биологической активностью. Для наименования групп подобных родственных соединений применяют буквенные обозначения; витамеры принято обозначать терминами, отражающими их химическими природу. Примером может служить витамин В6, группа которого включает три витамера: пиридоксин, пиридоксаль и пиридоксамин. Принятая терминология не является общепризнанной, поэтому допускаются разнообразные обозначения В., за исключением устаревших (табл. 1).

Классификация, номенклатура витаминов и их специфические функции в организме человека

| Витамин | Витамеры | Активные формы витаминов | Специфические функции витаминов |

| Водорастворимые витамины |

| Витамин С | Аскорбиновая кислота, | Не известны | Участвует в гидроксилировании пролина |

| | дегидроаскорбиновая кислота | | в оксипролин в процессе созревания |

| Тиамин (витамин | Тиамин | Тиаминдифосфат (ТДФ, | В форме ТДФ является коферментом |

| В1) | | тиаминпирофосфат, кокарбоксилаза) | ферментов углеводно-энергетического |

| Рибофлавин | Рибофлавин | Флавинмононуклеотид (ФМН), | В форме ФМН и ФАД образует |

| (витамин В2) | | флавинадениндинуклеотид (ФАД) | простетические группы флавиновых |

| Пантотеновая | Пантотеновая кислота | Кофермент А (коэнзим А; КоА) | В форме КоА участвует в процессах |

| кислота | | | биосинтеза, окисления и других |

| (устаревшее | | | превращениях жирных кислот и |

| название — | | | стеринов (холестерина, стероидных |

| витамин В5) | | | гормонов), в процессах ацетилирования, |

| Витамин В6 | Пиридоксаль, пиридоксин, | Пиридоксальфосфат (ПАЛФ) | В форме ПАЛФ является коферментом |

| | пиридоксамин | | большого числа ферментов азотистого |

| | | | обмена (трансаминаз, декарбоксилаз |

| Витамин В12 | Цианокобаламин, | Метилкобаламин (СН3В12), | В форме СН3В12 участвует в синтезе |

| (кобаламины) | оксикобаламин | дезоксиаденозилкобаламин (дАВ12) | метионина из гомоцистеина; в форме |

| | | | дАВ12 участвует в расщеплении жирных |

| | | | кислот и аминокислот с разветвленной |

| | | | цепью или нечетным числом атомов |

| Ниацин (витамин | Никотиновая кислота, | Никотинамидадениндинуклеотид | В форме НАД и НАДФ является |

| РР) | никотинамид | (НАД); | первичным акцептором и донором |

| | | никотинамидадениндинуклеотид- | электронов и протонов в окислительно- |

| | | фосфат (НАДФ) | восстановительных реакциях, |

| Фолат (устаревшее | Фолиевая кислота, | Титетрагидрофолиевая кислота | В форме ТГФК осуществляет перенос |

| название — | полиглютаматы фолиевой | (ТГФК) | одноуглеродных фрагментов при |

| витамин Вс) | кислоты | | биосинтезе пуриновых оснований, |

| Биотин (устаревшее | Биотин | Остаток биотина, связанный с ε- | Входит в состав карбоксилаз, |

| название — | | аминогруппой остатка лизина в | осуществляющих начальный этап |

| витамин Н) | | молекуле апофермента | биосинтеза жирных кислот |

| Витамин А | Ретинол, ретиналь, ретиноевая | Ретиналь, ретинилфосфат | В форме ретиналя входит в состав |

| | кислота, ретинола ацетат | | зрительного пигмента родопсина, |

| | | | обеспечивающего восприятие света |

| | | | (превращение светового импульса в |

| | | | ретинилфосфата участвует как |

| | | | переносчик остатков сахаров в |

| Витамин D | Эргокальциферол (витамин D2); | 1,25-Диоксихолекальциферол | Гормон, участвующий в поддержании |

| (кальциферолы) | холекальциферол (витамин D3) | (1,25(ОН)2D3) | гомеостаза кальция в организме; |

| | | | усиливает всасывание кальция и |

| | | | фосфора в кишечнике и его |

| | | | мобилизацию из скелета; влияет на |

| | | | дифференцировку клеток эпителиальной |

| | | | и костной ткани, кроветворной и |

| Витамин Е | α-, β-, γ-, d-токоферолы | Наиболее активная форма α- | Выполняет роль биологического |

| (токоферолы) | | токоферол | антиоксиданта, инактивирующего |

| | | | кислорода, защищает липиды |

| | | | биологических мембран от перекисного |

| Витамин К | Филлохинон (витамин К1); | Дигидровитамин К, | Участвует в превращении |

| | менахиноны (витамины К2); 2- | | препротромбина в протромбин, а также в |

| | метил-1,4-нафтохинон | | аналогичных превращениях некоторых |

| | (менадион, витамин К3) | | белков, участвующих в процессе |

| | | | свертывания крови, и костного белка |

Наряду с В. известна группа витаминоподобных соединений. К ним относят холин, инозит, оротовую, липоевую и парааминобензойную кислоты, карнитин, биофлавоноиды (рутин, кверцетин, чайные катехины) и ряд других соединений, обладающих теми или иными свойствами витаминов. Витаминоподобные соединения не имеют, однако, всех основных признаков, присущих истинным В., и, следовательно, таковыми не являются. В частности, холин и инозит, входя в состав соответствующих фосфолипидов, выполняют в организме пластическую функцию. Оротовая и липоевая кислоты, а также карнитин синтезируются в организме. Парааминобензойная кислота является В. только для микроорганизмов, для человека и животных она биологически неактивна. Метил-метионинсульфония хлорид (витамин U) обладает терапевтическим эффектом при ряде заболеваний, но не выполняет каких-либо жизненно важных функций в организме. То же в значительной мере относится и к биофлавоноидам (витамин Р) — растительным фенолам, обладающим капилляроукрепляющим действием.

Отдельные жирорастворимые В. могут синтезироваться в организме из своих предшественников — так называемых провитаминов. Известны провитамины А (каротины) и группы D (некоторые стерины). Каротины, поступающие в организм в составе продуктов растительного происхождения, расщепляются под действием специфического фермента с образованием ретинола (наибольшей биологической активностью обладает β-каротин). Эргостерин и 7-дегидрохолестерин превращаются в витамины группы D (эргокальциферол и холекальциферол соответственно) под действием ультрафиолетового излучения определенной длины волны. Эргостерин содержится в продуктах растительного происхождения; его высоким содержанием отличаются дрожжи, используемые для получения синтетического эргокальциферола. 7-Дегидрохолестерин входит в состав липидов кожи человека и животных; синтез холекальциферола осуществляется под действием ультрафиолетового излучения Солнца (или искусственных источников).

Химическое строение всех известных В. полностью установлено. Выяснены и исследованы их свойства и специфические функции в организме. Вместе с тем имеющиеся данные о механизме действия ряда В. не являются исчерпывающими. Специфические функции многих В. определяются их связью с различными ферментами. Большинство водорастворимых В. (группа В) участвует в образовании коферментов и простетических групп ферментов, которые, взаимодействуя с белковым компонентом (апоферментом), приобретают каталитическую активность и непосредственно включаются в разнообразные химические реакции. Таким образом, В. принимают опосредованное участие во многих обменных процессах: энергетическом (тиамин, рибофлавин и ниацин), биосинтезе и превращениях аминокислот и белков (витамины В6 и В12), различных превращениях жирных кислот и стероидных гормонов (пантотеновая кислота), нуклеиновых кислот (фолат) и других физиологически активных соединений. Некоторые жирорастворимые В. также выполняют коферментные функции. Витамин А в форме ретиналя является простетической группой зрительного белка родопсина, участвующего в процессе фоторецепции; в форме ретинилфосфата он играет роль кофермента — переносчика остатков сахаров в биосинтезе гликопротеидов клеточных мембран. Витамин К осуществляет коферментные функции при биосинтезе ряда белков, связывающих кальций (в частности, протромбина), участвующих в процессе свертывания крови. Функции В., не являющихся предшественниками образования коферментов и простетических групп ферментов, весьма разнообразны и связаны с осуществлением и регуляцией различных биохимических и физиологических процессов (табл. 1). Так, витамин D играет важную роль в обеспечении организма кальцием и поддержании его гомеостаза, влияет на процессы дифференцировки клеток эпителиальной и костной ткани, кроветворной и иммунной систем.

Необходимым условием реализации специфических функций В. в обмене веществ является нормальное осуществление их собственного обмена: всасывания в кишечнике, транспорта к тканям, превращения в биологически активные формы. Эти процессы протекают при участии специфических белков. Так, всасывание и перенос В. кровью происходят, как правило, с помощью специальных транспортных белков (например, ретинолсвязывающий белок для витамина А, транскобаламины I и II для витамина В12). Превращение В. в коферменты и простетические группы или в активные метаболиты (витамины группы D), а также последующее взаимодействие их с апоферментами осуществляются с помощью специфических ферментов: пиридоксалькиназа, в частности, катализирует превращение пиридоксаля (витамин В6) в пиридоксальфосфат, синтез тиаминдифосфата из тиамина протекает при участии тиаминпирофосфокиназы. Т.о., возможный дефект биосинтеза какого-либо специфического белка, участвующего в процессах ассимиляции В., неизбежно приводит к различным расстройствам обмена тех или иных В. и соответственно их функций в организме.

Читайте также:  Витамины для восстановления иммунитета для детей

Снижение или полная потеря биологического эффекта В. может быть вызвана так называемыми антивитаминами — веществами, имеющими структурное сходство с В. или вызывающими модификацию их химической природы. Действие структуроподобных антивитаминов основано на конкурентных взаимоотношениях с В. (в частности, при биосинтезе коферментов и взаимодействии с апоферментами): заняв место В. в структуре фермента, антивитамины не выполняют их специфических функций, в связи с чем развиваются различные расстройства процессов метаболизма, Вторую группу составляют антивитамины биологического происхождения, разрушающие или связывающие молекулы В.: например, ферменты тиаминазы вызывают распад молекул тиамина, яичный белок авидин связывает биотин в биологически неактивный комплекс.

Некоторые антивитамины обладают антимикробной активностью и применяются в качестве химиотерапевтических средств. Так, сульфаниламидные препараты являются антивитаминами парааминобензойной кислоты, используемой бактериями для синтеза необходимого для их жизнедеятельности фолата; сульфаниламид, вытесняющий парааминобензойную кислоту из комплекса с ферментом, способствует т.о. снижению роста бактерий и их гибели. Аминоптерин и аметоптерин (антивитамины фолата) тормозят синтез белка и нуклеиновых кислот в клетках и применяются для лечения больных с некоторыми злокачественными новообразованиями.

Витамины обладают высокой биологической активностью и требуются организму в очень небольшом количестве, соответствующем физиологической потребности, которая варьирует в пределах от нескольких микрограммов до нескольких десятков миллиграммов. Потребность в каждом конкретном витамине также подвержена колебаниям, обусловленным действием различных факторов, которые учитываются в рекомендуемых нормах потребления витаминов, подвергающихся периодическому уточнению и пересмотру. Существенное влияние на потребность в В. оказывают возраст и пол человека, характер и интенсивность его труда. Потребность в В. значительно возрастает при особых физиологических состояниях организма: у женщин — во время беременности, в период лактации, у детей — в период интенсивного роста (см. Питание). Следует иметь в виду, что любые причины, изменяющие интенсивность обмена веществ, существенно влияют и на обмен В. в организме, повышая их расход в процессе жизнедеятельности В частности, потребность в В. значительно возрастает под влиянием некоторых климатических и погодных условий, способствующих длительному переохлаждению или перегреванию организма, сопровождающихся резкими перепадами температуры атмосферного воздуха. Повышенная потребность в В. развивается при интенсивной физической нагрузке, нервно-психическом напряжении, в условиях воздействия неблагоприятных факторов окружающей среды, при ряде патологических состояний (например, при гипоксии). Повышенный расход В. возникает при болезнях желудочно-кишечного тракта, печени и почек, повышенная потребность в В. отмечается при некоторых эндокринных заболеваниях, например гипотиреозе, функциональной недостаточности коры надпочечников. В пожилом и старческом возрасте повышенная потребность в В. обусловлена ухудшением всасывания и утилизации В., а также различными диетическими ограничениями.

Недостаточное потребление В. ведет к нарушениям зависящих от них биохимических (главным образом ферментативных) процессов и физиологических функций организма, обусловливает серьезные расстройства обмена веществ, поэтому исследование витаминной обеспеченности человека имеет важное диагностическое значение. С этой целью обычно определяют содержание В. и продуктов их обмена в крови и моче, исследуют активность ферментов, в состав которых в виде кофермента или простетической группы входит конкретный витамин, а также другие биохимические и физиологические показатели, характеризующие осуществление тем или иным В. его специфических функций. Другой подход заключается в изучении фактического питания обследуемых людей и оценке поступления В. с пищей с помощью справочных таблиц, отражающих химический состав пищевых продуктов, или непосредственного определения содержания В. в пище. Для количественного определения содержания В. в пищевых продуктах и биологических объектах используют различные колориметрические, спектрофотометрическис и флюорометрические методы, а также методы микробиологического анализа. Все большее распространение получают методы высокоэффективной жидкостной хроматографии, позволяющие наиболее полно и точно определить дефицит В. в организме, что особенно важно при стертой картине витаминной недостаточности (Витаминная недостаточность).

Организм человека не способен запасать В. на более или менее длительное время, они должны поступать регулярно, в полном наборе и соответствии физиологической потребности. Вместе с тем приспособительные возможности организма достаточно велики, и в течение определенного времени дефицит В. практически не проявляется: расходуются В., депонированные в органах и тканях, включаются и другие компенсаторные механизмы обменного характера. Только после израсходования депонированных В. возникают различные расстройства обмена веществ. Однако постоянное недостаточное потребление В., даже не характеризующееся какими-либо клиническими проявлениями гиповитаминоза, отрицательно сказывается на состоянии здоровья человека: ухудшается самочувствие, снижаются работоспособность и сопротивляемость к респираторным и другим инфекционным заболеваниям, усиливается воздействие на организм неблагоприятных факторов среды обитания. Недостаточное поступление с пищей некоторых В. (особенно С и А) является фактором риска ишемической болезни сердца и ряда злокачественных новообразований. В частности, многолетние исследования больших контингентов людей, проведенные английскими и американскими специалистами, показали, что частота заболеваний раком полости рта, желудочно-кишечного тракта и легких при низком уровне витамина А в крови в 2—4 раза выше, чем при оптимальной обеспеченности этим витамином.

Недостаточная обеспеченность В. беременных и кормящих женщин причиняет ущерб здоровью матери и ребенка, является одной из причин недоношенности, врожденных пороков, нарушений физического и умственного развития детей. В детском и юношеском возрасте недостаточное потребление В. отрицательно сказывается на показателях общего физического развития, препятствует формированию здорового жизненного статуса, обусловливает постепенное развитие обменных нарушений и хронических заболеваний.

Недостаточная витаминная обеспеченность отягощает течение основного заболевания, снижает эффективность терапевтических мероприятий, осложняет исход хирургических вмешательств и течение послеоперационного периода. В этой связи следует подчеркнуть отрицательную роль многих фармакологических препаратов в процессах обмена и утилизации В. в организме. В частности, антибиотики и сульфаниламидные препараты, подавляя микрофлору кишечника, нарушают эндогенный синтез витамина К, биотина и пантотеновой кислоты. Неомицин (даже при однократном применении) серьезно нарушает всасывание витамина А.

Широко используемые транквилизаторы риоксазинового ряда подавляют утилизацию рибофлавина, нарушая синтез его коферментной формы. Ацетилсалициловая кислота подавляет утилизацию фолата. Используемая в хирургии закись азота инактивирует витамины В12, что при продолжительной экспозиции (более 6 ч) может привести к нарушениям кроветворения и невропатиям.

Одна из причин недостаточной обеспеченности организма В. — отклонение фактического питания от рекомендуемых рациональных норм: недостаточное потребление свежих овощей и фруктов, продуктов животного происхождения, избыточное потребление углеводов, плохая осведомленность в вопросах правильного построения рациона, небрежность в питании, следование «модным» диетам и т.п. Наряду с этим все большее значение приобретает группа объективных причин, обусловленных коренными изменениями условий труда и быта современного человека, а также особенностями современных методов технологической переработки и кулинарной обработки пищевых продуктов и их длительным хранением, следствием чего является разрушение значительной части содержащихся в них витаминов. Существенную роль играет также значительное увеличение потребления рафинированных высококалорийных продуктов (белый хлеб, некоторые жиры и др.), практически лишенных В. и других незаменимых пищевых веществ. В результате этих тенденций рацион современного человека, достаточный (и даже избыточный) для покрытия энерготрат, оказывается не в состоянии обеспечить рекомендуемые нормы потребления витаминов.

Важную роль в обеспечении организма В. традиционно отводят обогащению рациона свежими овощами и фруктами. Однако их потребление неизбежно имеет сезонные ограничения. Кроме того, овощи и фрукты являются источником лишь витамина С, фолата и каротинов. В то же время основными источниками витаминов группы В являются черный хлеб и мясо-молочные продукты, главным источником витамина А служит сливочное масло, витамина Е — растительные жиры (табл. 2). Т.о., коррекция витаминной ценности рациона за счет натуральных продуктов неизбежно ведет к избыточному увеличению его калорийности, являющемуся фактором риска ишемической болезни сердца, гипертонической болезни, сахарного диабета и ряда других заболеваний, профилактика которых требует, напротив, уменьшения калорийности рациона в соответствии с пониженными энерготратами современного человека.

Читайте также:  Какие витамины нужны для сердца и минералы

Содержание витаминов в основных продуктах питания

| Витамин | Наименование продукта | Содержание | Ориентировочное |

| | | витамина в | количество продукта, |

| | | продукте, мг | обеспечивающее суточную |

| | | /100 г | потребность в витамине, г |

источник

ВИТАМИНЫ

ВИТАМИНЫ (лат. vita жизнь + амин[ы]) — пищевые вещества, необходимые для поддержания жизненных функций. По строению являются низкомолекулярными соединениями различной хим. природы. Организм человека и животных не синтезирует В. или синтезирует в недостаточном количестве и поэтому должен получать их в готовом виде. В. требуются организму от нескольких микрограммов до нескольких миллиграммов в день (см. табл.). В отличие от других незаменимых факторов питания (незаменимые аминокислоты, ненасыщенные жирные кислоты и др.), В. не являются пластическим материалом или источником энергии и участвуют в обмене веществ преимущественно не как субстраты биохим, реакций, а как участники механизмов биокатализа и регуляции отдельных биохим, и физиол, процессов.

Недостаток В. в пище или изменение процессов их усвоения приводит к нарушениям обмена веществ и в конечном счете к развитию гипо- и авитаминозов (см. Витаминная недостаточность).

Открытие В. тесно связано с изучением роли отдельных пищевых веществ в обеспечении полноценного питания. Во второй половине 19 в. считалось, что для нормального функционирования организма достаточно определенного содержания в пище белков, жиров, углеводов, минеральных солей и воды.

В 1880 г. русский исследователь Н. И. Лунин установил, что в пищевых продуктах имеются еще неизвестные факторы питания, необходимые для жизни. Он показал, что белые мыши, получавшие цельное молоко, росли хорошо и были здоровы, но погибали, когда их кормили смесью из основных составных частей молока: казеина, жира, молочного сахара, солей и воды. Выводы Н. И. Лунина были в дальнейшем подтверждены С. А. Сосиным (1891), а в 1906 — 1912 гг. Ф. Гопкинсом.

В 1897 г. голл. врач Эйкман (Ch. Eijkman) установил, что у кур, получавших в пищу полированный рис, развивалось сходное с бери-бери заболевание, однако они выздоравливали после того, как им давались рисовые отруби.

По предложению польского ученого К. Функа (1911 — 1912), работавшего над выделением активного начала рисовых отрубей и обнаружившего наличие в них аминогруппы, все вещества подобного рода стали называть витаминами («жизненными аминами»).

Известно около двух десятков веществ, которые могут быть отнесены к В. Принято различать водорастворимые и жирорастворимые В. К первым относятся аскорбиновая к-та (витамин С), а также витамины группы В.: тиамин (витамин B1), рибофлавин (витамин В2), пиридоксин (витамин B6), кобаламины (витамин B12), ниацин (витамин PP, никотиновая к-та), фолацин (фолиевая к-та), пантотеновая к-та и биотин. К жирорастворимым В. относят ретинол (витамин А), кальциферолы (витамин D), токоферолы (витамин Е) и филлохиноны (витамин К). Наряду с В., необходимость которых для человека и животных бесспорно установлена, а дефицит приводит к явлениям витаминной недостаточности, имеются и другие биологически активные вещества, функции которых носят не столь специфический характер. Эти вещества могут быть причислены к витаминоподобным соединениям. К ним обычно относят биофлавоноиды, холин, инозит, липоевую, оротовую, пангамовую и парааминобензойную кислоты. Парааминобензойная к-та является фактором роста для некоторых микроорганизмов, синтезирующих из нее фолиевую к-ту. Для человека и животных парааминобензойная к-та биологически неактивна, т. к. они не способны превращать ее в фолиевую к-ту.

Целый ряд В. представлен не одним, а несколькими соединениями, обладающими сходной биол, активностью. Примером может служить группа витамина B6, включающая пиридоксин, пиридоксаль и пиридоксамин. Для обозначения подобных групп родственных соединений в соответствии с рекомендациями Международного союза специалистов по питанию (1969) используются буквенные обозначения (витамины A, D и т. п.). Для обозначения индивидуальных соединений, обладающих витаминной активностью, рекомендуется давать рациональные названия, отражающие их хим. сущность, напр, ретиналь (альдегидная форма витамина А), эргокальциферол и холекальциферол (формы витамина D). Хим. строение известных В. полностью установлено, большинство из них получено путем хим. синтеза. Химический, а также микробиол, синтез является основой современного промышленного производства большинства В.

Кроме В., известны провитамины— соединения, которые, не являясь витаминами, могут служить предшественниками их образования в организме. К ним относятся каротины, расщепляющиеся в организме с образованием ретинола (витамина А), некоторые стерины (эргостерин, 7-дегидрохоле стерин и др.), превращающиеся в витамин D.

Некоторые производные В. с замещенными функциональными группами оказывают на организм противоположное по сравнению с В. действие, т. е. являются антивитаминами. Проникая в клетки, эти вещества вступают в конкурентные отношения с В., в частности при биосинтезе коферментов и образовании активных ферментов. Заняв место В. в структуре фермента, антивитамины вследствие различий в строении не могут выполнять их функции. К антивитаминам относят также вещества, связывающие или разрушающие В. (см. Авидин, Тиаминаза). Ряд антивитаминов обладает антимикробной активностью и применяется в качестве химиотерапевтических средств, как, напр., сульфаниламидные препараты.

Специфическая функция витаминов группы В в организме состоит в том, что из них образуются коферменты (см.) и простетические группы ферментов, осуществляющие многие важнейшие реакции обмена веществ. Так, тиамин (витамин В1) превращается в организме в тиамин-дифосфат (кокарбоксилаза), являющийся коферментом энзиматических систем, осуществляющих окислительное декарбоксилирование α-кетокислот.

Связанные с различными В. ферменты принимают участие в осуществлении многих важнейших процессов обмена веществ: энергетическом обмене (витамины B1 и B2), биосинтезе и превращениях аминокислот (витамины B6 и B12), жирных кислот (пантотеновая к-та), пуриновых и пиримидиновых оснований (фолиевая к-та), образовании многих физиологически важных соединений (ацетилхолина, стероидов) и др. Коферменты и простетические группы, а тем более соответствующие В., сами по себе каталитической активностью не обладают и приобретают ее лишь при взаимодействии со специфическими белками — апоферментами.

Введение В., в т. ч. в повышенных дозах, не может нормализовать скорость связанной с ним биохимической реакции, если она снижена не из-за недостатка этого В., а в силу каких-либо иных нарушений. С этой точки зрения использование В. в мед. практике в дозировках, значительно превышающих физиол, потребность, не всегда может быть оправдано, а в ряде случаев и небезопасно, поскольку оно может вести к нарушению обмена веществ и гипервитаминозам (см.).

В отличие от витаминов группы В, жирорастворимые витамины ретинол, кальциферолы, токоферолы и филлохиноны, а также аскорбиновая к-та не являются предшественниками коферментов или простетических групп. Функции этих В. различны и связаны с осуществлением процессов фоторецепции (витамин А), свертывания крови (витамин К), всасывания кальция (витамин D).

Необходимым условием реализации специфических функций В. в обмене веществ является нормальное осуществление их собственного обмена: всасывания в кишечнике, транспорта в ткани, превращения в активные формы. Всасывание и перенос В. кровью осуществляются, как правило, с помощью специальных транспортных белков (ретиносвязывающий белок для ретинола, транскобаламины I и II для витамина B12 и т. д.). Превращение В. в активные формы, в частности в коферменты и простетические группы, а также присоединение этих простетических групп к апоферментам осуществляются с помощью специфических ферментов. Так, пиридоксалькиназа катализирует превращение пиридоксаля (одной из форм витамина B6) в его коферментную форму — пиридоксальфосфат. Тиаминпирофосфокиназа осуществляет превращение тиамина в тиаминдифосфат. Нарушение одного из этих процессов, напр., при врожденном или приобретенном дефекте биосинтеза одного из специфических белков, участвующих в обмене того или иного В., делает невозможным выполнение В. своих специфических функций, что ведет к развитию частичной или полной витаминной недостаточности. Примером таких нарушений может служить анемия, развивающаяся при врожденном дефекте всасывания фолиевой к-ты в кишечнике или при генетическом дефекте дигидрофолатредуктазы, превращающей фолиевую к-ту в ее коферментную форму — тетрагидрофолиевую к-ту. Наряду с превращением в активные формы В. подвергаются в организме катаболическим превращениям с образованием неактивных форм, в виде которых они могут выводиться из организма (4-пиридоксиновая к-та из пиридоксина, N1-метилникотинамид из никотин амида и др.).

Читайте также:  Какие витамины можно давать ребенку в полтора года

Недостаточное поступление В. в организм или нарушение их превращения можно определять путем исследования витаминного статуса человека. С этой целью определяют содержание В. и продуктов их обмена в крови, моче, активность ферментов, в состав которых в виде кофермента или простетической группы входит данный В., а также другие биохим, и физиол, показатели, характеризующие специфические функции В.

Методы определения витаминов приведены в статьях, посвященных отдельным витаминам (напр., Аскорбиновая кислота, Ретинол, Тиамин и др.). Применяется также и радиоизотопный метод (см. Витаминная недостаточность, радиоизотопная диагностика).

При помощи гистохимических методов можно выявить наличие в тканях ретинола, рибофлавина и аскорбиновой к-ты.

Определение аскорбиновой к-ты основано на свойстве ее в темноте и на холоду восстанавливать кислые растворы азотнокислого серебра. Существуют различные модификации методов, основанные на обработке кислыми растворами азотнокислого серебра нефиксированных тканевых блоков или свежих замороженных срезов. Предложен также метод обработки лиофилизированных срезов. Однако некоторые исследователи [Даниэлли (J.F. Danielli), Кисель (G. Kiszely) и др.] ставят под сомнение специфичность методов в целом в связи со способностью витамина С к диффузии и, возможно, наличием в тканях других сильных восстановителей серебра. Так, Клара (М. Clara), хотя и считает эти методы пригодными для выявления аскорбиновой к-ты, однако указывает на свойство гранул α-клеток островков поджелудочной железы, вещества энтерохромаффинных клеток, адренохрома, меланинов, нейросекреторных гранул супраоптических и паравентрикулярных ядер гипоталамуса также восстанавливать кислые растворы серебра.

Наибольшей популярностью пользуется метод Бурна (G. Н. Bourne) и метод Жиру (A. Giroud) и Леблона (С. P. Leblond).

Метод Жиру и Леблона позволяет получить тонкие парафиновые срезы, удобные для изучения. Свежий тканевый блок размером 2x3x2 мм помещают на 30—40 мин. в 10% раствор азотнокислого серебра, подкисленного концентрированной уксусной к-той до pH 3,0—4,0; затем раствор сливают и кусочки ткани промывают несколько раз дистиллированной водой и на 30 мин. помещают в 6% раствор гипосульфита натрия, после чего тканевые блоки обезвоживают спиртами восходящей концентрации и по обычной схеме заключают в парафин. Все процедуры, за исключением заливки в парафин, проводят в темноте. Полученные парафиновые срезы слегка подкрашивают смесью метилового зеленого и пиронина. Участки локализации аскорбиновой к-ты имеют вид мелких черных гранул.

Определение рибофлавина основано на восстановлении его водородом (в момент образования) до лейкофлавина, который на воздухе окисляется до родофлавина, имеющего красный цвет. Ткань фиксируют формалином и проводят реакцию на замороженных срезах. Срезы помещают на 30 мин. в 1—2% раствор соляной к-ты, в к-рую добавляют цинковую пыль; затем их промывают в воде и в течение нескольких часов выдерживают в чашке Петри или на часовом стекле на воздухе и заключают в глицерин-желатину. Флавопротеины окрашиваются в красный цвет.

Выявление витамина А основано на его свойстве давать яркую зеленую флюоресценцию в ультрафиолетовых лучах с длиной волны 365 нм. Свежие тонкие тканевые блоки фиксируют 10% раствором холодного формалина не более чем на 10—12 час. Затем немедленно готовят замороженные срезы, которые изучают в воде. Свечение исчезает через 10—60 сек. (следует иметь в виду, что стойкое свечение обусловлено не витамином А). Для контроля срезы обрабатывают раствором соляной к-ты.

источник

Энциклопедия продуктов питания. Пищевые продукты — их свойства, влияние на организм, критерии выбора и безопасности продуктов питания

Минеральные вещества — это химические элементы, необходимые организму для обеспечения его нормальной жизнедеятельности.
Минеральные вещества подразделяют на макро- и микроэлементы.
Макроэлементы, такие как натрий, калий, кальций, фосфор, железо, магний, хлор, сера, требуются в больших количествах — от нескольких грамм до сотен грамм, и составляют более 0,01 % от веса тела.

Микроэлементов, таких как фтор или цинк, нужно значительно меньше, а некоторые, так называемые следовые элементы, типа селена, молибдена или йода, нужны в микроскопических количествах, их содержание в организме не превышает 0,001 % от веса тела.

Все минеральные вещества можно классифицировать по их функции в организме:

Биогенные вещества (азот, водород, кислород, углерод) отвечают за построение основных тканей и органов, поэтому их часто называют органообразующими. Суммарно эти элементы составляют большую часть веса тела человека.

Структурные: калий, кальций, магний, натрий, сера, фосфор, фтор и хлор. Эти элементы также входят в состав различных тканей (костей, кожи, зубов, соединительной ткани и т.д.), занимая значимую часть их объема.

Жизненно необходимые (эссенциальные): ванадий, йод, железо, кобальт, кремний, литий, марганец, молибден, медь, мышьяк, никель, селен, фтор, хром, цинк. Несмотря на относительно малое содержание их в организме, они играют важную роль в качестве регуляторов и активных центров ферментов.

Условно-необходимые: бром и бор.
Вероятно необходимые: алюминий, кадмий, рубидий и свинец.
Менее значимые (остальные 48 элементов).

Вместе с другими нутриентами — белками, жирами, углеводами и витаминами, минеральные вещества жизненно важны для построения тканей, протекания всех биохимических и физиологических процессов, составляющих жизнедеятельность организма.

В теле человека обнаружены 81 из 92 встречающихся в природе химических элементов. При этом считается, что для нормальной жизнедеятельности человека совершенно необходимы всего 27 минеральных веществ.

Несмотря на важность и необходимость многих веществ, они способны оказывать отрицательное воздействие в случаях, когда их поступление превышает некие максимальные значения. Нарушение баланса макро- и микроэлементов принято назвать «микроэлементозы».Сюда относят такие вещества, как кадмий, олово, свинец и рубидий.
Биологическая роль отдельных минеральных веществ до сих пор остается не изученной.

Витамины — группа необходимых организму низкомолекулярных органических соединений, обладающих высокой биологической активностью, которые не синтезируются в организме человека в достаточном количестве и поэтому должны поступать с пищей.

Для чего и зачем нужны витамины?

Происхождение слова «витамин» не зря связано с латинским «vita», что в переводе означает «жизнь». Уже отсюда видно огромное значение витаминов для живых существ. При этом витамины не являются поставщиком энергии для организма и не имеют существенного значения в построении тканей, однако витаминам отводится важнейшая роль в обмене веществ.

В настоящее время, в связи с расшифровкой механизма действия витаминов, принято разделять их на собственно витамины, которые участвуют в биохимических реакциях или несут каталитическую функцию, и витаминоподобные вещества, которые участвующие в обмене веществ в качестве строительного материала.

Действие витаминов многогранно. Это “точечные” активаторы самых различных процессов. В частности, витамины:
несут сигнальную функцию в качестве прогормонов и гормонов;
защищают мембраны клеток от вредоносных активных форм кислорода (свободных радикалов), которые считаются одной из причин старения.

Классификация витаминов построена на их биологической активности, а не химической формуле. Каждый «витамин» обозначает то или иное число веществ, проявляющих сходную биологическую активность (витамеров).

В связи с различием механизма их всасывания в желудочно-кишечном тракте человека выделяют водорастворимые и жирорастворимые витамины.
К жирорастворимым витаминам относятся четыре витамина, обозначаемых латинскими буквами A, D, E и K. Остальные входят в группу водорастворимых витаминов.

источник