Меню
>

Акцепторы и переносчики водорода витамин

Акцепторы и переносчики водорода витамин

11.3.7. Переносчики водорода и электронов

НАД и НАДФ — два очень близких по своей структуре кофермента. Оба они представляют собой производные никотиновой кислоты (одного из витаминов группы В). Молекулы того и другого кофермента электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком.

Суммарную реакцию можно записать так:

Свободный протон позднее, при отщеплении водорода, используется для обратного окисления кофермента.

Флавопротеины — это коферменты, в состав которых входит витамин В2. ФАД (флавинадениндинуклеотид) играет роль простетической группы, белковая же часть молекулы флавопротеина действует как фермент. В дыхательной цепи эта белковая часть выступает в качестве НАД-дегидрогеназы, катализируя окисление восстановленного НАД. Водород переносится флавопротеином в виде целых атомов.

В цикле Кребса белковая часть флавопротеина, простетической группой которого служит ФАД, действует как сукцинатдегидрогеназа. Она катализирует окисление янтарной кислоты в фумаровую. Восстановленный ФАД располагается в дыхательной цепи после первого пункта окислительного фосфорилирования (т. е. синтеза АТФ). Поэтому за счет его обратного окисления синтезируются только две молекулы АТФ (рис. 11.10).


Рис. 11.10. Развернутая схема дыхательной цепи. Каждый цитохром способен передавать только один электрон. Предполагается, что на каждом дыхательном пути действуют два ряда цитохромов. Здесь показан только один, но цифры удвоены, чтобы количества образующихся конечных продуктов соответствовали действительности. В энергетическом смысле электроны перемещаются ‘вниз’

Молекула этого кофермента содержит цикл из шести атомов углерода. Кофермент Q принимает водород от флавопротеина и передает его цитохрому b.

Все цитохромы — это белки с относительно небольшой молекулярной массой. Они содержат тем в качестве прочно связанной простетической группы и переносят не водородные атомы, а электроны. Роль переносящего электроны компонента в цитохромах играет железо гема. Обычно оно находится в окисленной форме (Fe 3+ ), но после присоединения электрона, переходит в восстановленную форму (Fe 2+ ). Каждый водородный атом, поступающий от кофермента Q, распадается на ион водорода и электрон:

Этот электрон присоединяется к иону железа:

Ионы водорода поступают на время в окружающую среду: они понадобятся вновь позднее, в конце дыхательной цепи.

Электрон от цитохрома b переходит к цитохрому с и далее к цитохрому а + а3 — прочному комплексу двух цитохромов, называемому обычно цитохромоксидазой. Этот комплекс, помимо железа, содержит еще и медь и вступает в окислительно- восстановительную реакцию, когда цитохром а3 в конце концов передает электроны кислороду (рис. 11.10). Любой цитохром может переносить только по одному электрону; поэтому полагают, что во всякой дыхательной цепи имеются два ряда цитохромов, которые и осуществляют перенос электронных пар:

Теперь, когда читатель уже кое-что знает о переносчиках водорода и электронов, ему будет легче разобраться и в более подробной схеме дыхательной цепи, приведенной на рис. 11.10.

источник

24) . Витамины. Определение. Номенклатура и классификация. Функции витаминов. Первичные и вторичные гиповитаминозы и авитаминозы. Антивитамины. Механизм действия антивитаминов.

Витамины– это пищевые незаменимые факторы, которые, присутствуя в небольших количествах в пище, обеспечивают нормальное развитие организма животных и человека и адекватную ско- рость протекания биохимических и физиологических процессов.

Как правило, суточная норма витаминов различается в зависимости от возраста, рода занятий, сезона года, пола, беременности и др. факторов.

Витамины, растворимые в жирах

Витамин А (антиксерофтальмический); ретинол

Витамин D (антирахитический); кальциферолы

Витамин Е (антистерильный, витамин размножения); токоферолы

Витамин К (антигеморрагический); нафтохиноны

Витамины, растворимые в воде

Витамин B1 (антиневритный); тиамин

Витамин В2 (витамин роста); рибофлавин

Витамин В6 (антидерматитный, адермин); пиридоксин

Витамин B12 (антианемический); цианкобаламин; кобаламин

Витамин РР (антипеллагрический, ниацин); никотинамид

Витамин Вc (антианемический); фолиевая кислота

Витамин В3 (антидерматитный); пантотеновая кислота

Витамин Н (антисеборейный, фактор роста бактерий, дрожжей и грибков); биотин

Витамин С (антискорбутный); аскорбиновая кислота

Витамин Р (капилляроукрепляющий, витамин проницаемости); биофлавоноиды.

Витаминоподобные соединения: холин, инозит, витамин V, липоевая кислота, оротовая кислота, пангамовая кислота (В15).

ДИСБАЛАНС ВИТАМИНОВ — проявляется в форме недостатка (отрицательный баланс) и избытка (положительный баланс). авитаминозы– болезни, возникающие при полном отсутствии в пище или полном нарушении усвоения какого-либо витамина. Известны так называемыегиповитамтозы, обусловленные недостаточным поступлением витаминов с пищей или неполным их усвоением. Все гипо — и авитаминозы проявляются задержкой роста молодого организма. Кроме того, для конкретного гиповитаминоза характерны свои специфические симптомы нарушений обмена веществ, по которым и выявляют недостаточность соответствующего витамина.

Открытие витаминов сыграло исключительную роль в профилактике и лечении многих инфекционных заболеваний. Так как бактерии для своего роста и размножения также нуждаются в присутствии многих витаминов для синтеза коферментов, введение в организм структурных аналогов витаминов, называемых антивитаминами, приводит к гибели микроорга низмов. Антивитамины обычно блокируют активные центры ферментов, вытесняя из него соответствующее производное витаминов (кофермент), и вызывают конкурентное ингибирование ферментов (см. главу 4). Кантивитаминамотносят вещества, способные вызывать после введения в ор- ганизм животных классическую картину гипо- или авитаминоза. Причины гипо- и авитаминозов у человека и животных обычно делят на экзогенные и эндогенные. К первым относится недостаточное поступление витаминов или полное отсутствие их в пище; следовательно, недостаточное и неполноценное питание чаще всего является причиной развития экзо- генных авитаминозов.

Эндогенными причинами, которые, по-видимому, являются более существенными, служат:

повышенная потребность в витаминах при некоторых физиологических и патологических состояниях (беременность, лактация, тиреотоксикоз, кахексические заболевания и др.);

усиленный распад витаминов в кишечнике вследствие развития в нем микрофлоры;

нарушение процесса всасывания витаминов в результате поражения секреторной и моторной функций кишечника при заболеваниях пищеварительного тракта, когда относительная недостаточность витами- нов развивается даже при полноценном питании;

болезни печени, под- желудочной железы, вызывающие закупорку общего желчного протока и сопровождающиеся нарушением всасывания жиров, продуктов их рас- пада – жирных кислот и соответственно жирорастворимых витаминов; в этих случаях также развиваются вторичные, или эндогенные, авита минозы.

источник

Переносчики электронов в дыхательной цепи

Характеристика ферментов, принимающих участие в тканевом дыхании.

1) Пиридиновые дегидрогеназы содержат в качестве коферментов производные витамина РР (никотинамида): НАД (никотинамиддинуклеотид) и НАДФ (никотинамиддинуклеотидфосфат). Большинство электронных пар поступает в дыхательную цепь благодаря НАД– зависимым дегидрогеназам, которые катализируют реакции дегидрирования органических молекул по схеме:
SH2 + НАД + ↔ S + НАДН + Н + . В качестве органических молекул (SH2) выступают пируват, жирные кислоты, глутамат, метаболиты ЦТК: изоцитрат, α-кетоглутарат, малат и др. В данном случае ферменты относят к первичным дегидрогеназам (отнимают атомы водорода непосредственно от окисляемого вещества). В дальнейшем электроны и протоны передаются от восстановленной формы НАДН2 в дыхательную цепь на Е-ФМН (НАДН-дегидрогеназа). НАДФ-зависимые дегидрогеназы катализируют реакции по схеме: SH2 + НАДФ + ↔ S + НАДФН + Н + . Большая часть восстановленной формы НАДФН2 образуется в пентозофосфатном цикле окисления глюкозы, локализованном в цитоплазме клетки. В дальнейшем НАДФН2 используется в процессах синтеза жирных кислот, холестерина, стероидных гормонов и др. Восстановительные эквиваленты (атомы водорода или электроны) от НАДФН2 могут поступать в дыхательную цепь, но сначала они должны быть переданы на НАД в реакции: НАДФН2 + НАД ↔ НАДФ + НАДН2.

2) Флавинзависимые дегидрогеназы. Содержат в качестве простетической группы производные витамина В2 (рибофлавина): ФМН (флавинмононуклеотид) или ФАД (флавинадениндинуклеотид). ФМН-зависимая НАДН-дегидрогеназа (Е-ФМН) является компонентом дыхательной цепи, принимает электроны от восстановленной формы НАДН2 по схеме: НАДН + Н + +Е-ФМН ↔ НАД + Е-ФМНН2. Далее электроны от ФМНН2 поступают на кофермент-Q. Подобные ферменты называются вторичными дегидрогеназами (принимают электроны (и протоны) от первичной дегидрогеназы).ФАД-зависимые дегидрогеназы относятся к первичным дегидрогеназам, катализируют реакции окисления органических молекул по схеме: SH2 + ФАД ↔ S + ФАДН2. В качестве органических молекул (SH2) выступают жирные кислоты и янтарная кислота (метаболит ЦТК). В дальнейшем электроны и протоны передаются от восстановленной формы ФАДН2 в дыхательную цепь.

3) Железо-серные центры или Fe-S-белки ( [Fe-S]n )(содержат негеминовое железо и атомы серы) ассоциированы с НАДН-дегидрогеназой, сукцинатдегидрогеназой и цитохромом b. Железо-серные центры участвуют в транспорте электронов за счет обратимого изменения степени окисления атомов железа [Fe (II) – Fe (III)].

4) Убихинон или кофермент-Q (Ко-Q) – этожирорастворимый хинон с боковой цепью из десяти пятиуглеродных изопреновых звеньев, его обозначают Q10. Убихинон выполняет коллекторную функцию, собирая восстановительные эквиваленты от НАДН-дегидрогеназы и других флавинзависимых дегидрогеназ по схеме:
Е-ФМНН2 (Е-ФАДН2) + Ко-Q ↔ Е-ФМН (Е-ФАД) + Ко-QH2.

5) Цитохромы. Цитохромы принадлежат к классу гемопротеинов, молекулы которых содержат железо, входящее в состав железопорфириновой группы, или гема, напоминающего по своему строению простетическую группу гемоглобина. Существуют три класса цитохромов: a, b, c. Цитохромы являются компонентами дыхательной цепи, где располагаются в следующем порядке: b → c1 → c → aa3. Каждый из цитохромов присоединяет электрон по схеме: Fe 3+ + e —Fe 2+ . Последним в ряду переносчиков электронов в дыхательной цепи стоит цитохромaa3, называемый также цитохромоксидазой, поскольку он переносит электроны прямо на кислород. Цитохром аа3 содержит в своем составе дополнительно два атома меди [Cu (II) – Cu (I)], которые участвуют в переносе электронов на кислород. Из всех переносчиков цепи переноса электронов только цитохром аа3 способен вступать непосредственно в реакцию с кислородом.

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:  Когда ломаются и слоятся ногти какие нужны витамины

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9987 — | 7778 — или читать все.

источник

Характеристика ферментов дыхательной цепи митохондрий

Первый тип переносчиков электронов и протонов (ферментов дегидрогеназ) в дыхательной цепи представлен никотинамидными коферментамиНАД(никотинамидадениндинуклеотид) иНАДФ (никотинамидадениндинуклеотидфосфат). Они состоят из: азотистых оснований – амида никотиновой кислоты (витамин В5) и аденина, двух углеводных компонентов – Д-рибозы, двух остатков фосфорной кислоты. НАДФ отличается от НАД наличием еще одной фосфатной группы у 2-го атома углерода аденилового нуклеотида.

Известно более 150 дегидрогеназ, коферментами которых являются НАД или НАДФ. Эти дегидрогеназы называются пиридинзависимыми, поскольку содержат никотинамид – производное пиридина. НАД и НАДФ обнаруживаются во всех типах клеток, причем НАД содержится в значительно больших количествах по сравнению с НАДФ. Дегидрогеназы, связанные с НАД, принимают участие, главным образом, в процессе дыхания (т.е. в переносе протонов и электронов от субстратов к кислороду), тогда как дегидрогеназы, связанные с НАДФ, участвуют преимущественно в переносе протонов и электронов от субстратов к восстановительным реакциям биосинтеза.

Механизм действия НАД и НАДФ.Коферменты НАД и НАДФ работают в клетке только вместе с белковой частью, образуя сложные ферменты дегидрогеназы. Специфичность связывания коферментов НАД и НАДФ с ферментами-белками зависит от адениннуклеотидной части их молекул, в то время как никотинамидная часть этих молекул осуществляет перенос электронов и протонов от окисляемого субстрата. Пиридиновое кольцо никотинамида имеет положительный заряд у четвертичного атома азота (поэтому окисленную форму НАД записывают в виде НАД + ). Это вызывает смещение электронной плотности в пиридиновом кольце и появление положительного заряда у атома углерода в параположении. К нему присоединяется гидрид-ион (Н — ), образующийся при неравномерном распределении электронов между атомами водорода: 2Н = Н — + Н + . Другой атом водорода, потерявший электрон (Н + ), освобождается в окружающую среду, подкисляя ее. В результате образуется восстановленная форма НАД, записываемая в виде НАД . 2Н или НАД . Н+Н + .

Дегидрогеназные реакции с участием в качестве коферментов НАД и НАДФ имеют ряд характерных особенностей, которые обусловливают их ключевую роль в процессах биологического окисления. Первая особенность дегидрогеназных реакций — их легкая обратимость при небольших изменениях свободной энергии, что позволяет коферментам участвовать как в окислении субстрата, так и в восстановлении продуктов реакции (в зависимости от потребностей клетки). Вторая особенность заключается в способности этих коферментов (как в окисленной, так и в восстановленной форме) легко отделяться от белка-носителя, их высокой подвижности, что облегчает обмен атомами водорода и электронами между различными дегидрогеназными системами, расположенными в разных частях клетки. Коферменты НАД и НАДФ способны акцептировать водород от большого числа субстратов, окислительно-восстановительный потенциал которых ниже -0,3 В. К числу таких субстратов относятся продукты расщепления углеводов, жиров и различных аминокислот.

В дыхательной цепи ферментов пиридинзависимые дегидрогеназы передают атомарные водороды другим переносчикам — флавиновым ферментам.

Флавиновые ферменты– это сложные ферменты, небелковая часть которых представлена простетическими группами ФМН (флавинаденинмононуклеотид) или ФАД (флавинадениндинуклеотид).

ФМН состоит из изоаллоксазинового кольца, спирта рибитола (вместе они образуют витамин В2 – рибофлавин) и фосфорной кислоты, ФАД содержит дополнительно адениловый нуклеотид. Молекулярная структура ФАД имеет вид:

В отличие от никотинамидных коферментов ФМН и ФАД прочно (ковалентно) связываются с соответствующими дегидрогеназными белками и не отщепляются ни на одной из стадий каталитического процесса. Реакции, катализируемые флавинзависимыми дегидрогеназами, трудно обратимы, и, следовательно, флавиновые коферменты не могут служить источником водородных атомов в процессах восстановительного биосинтеза, подобно никотинамидным коферментам.

Механизм действия ФМН и ФАД.Активной частью молекулы ФАД или ФМН служит изоаллоксазиновое кольцо рибофлавина. Два атома водорода (два протона и два электрона) присоединяются к первому и десятому атомам азота за счет внутримолекулярной перегруппировки двойных связей в кольце. Реакция восстановления ФМН имеет вид:

Окисленная форма ФМН Восстановленная форма ФМН . 2Н

В соответствии с более положительными величинами окислительно-восстановительных потенциалов, чем у никотинамидных коферментов (около — 0,1 В), флавопротеиды могут акцептировать водород от НАД . 2Н:

НАД . 2Н + ФМН = НАД + + ФМН . 2Н.

Именно этот процесс протекает в дыхательной цепи ферментов на внутренней мембране митохондрий.

В некоторых случаях, например при окислении янтарной кислоты, α-глицерофосфата и КоА-производных жирных кислот, флавинзависимые ферменты могут играть роль первичных дегидрогеназ и непосредственно принимать электроны и протоны от окисляемых субстратов без участия НАД и связанных с ним дегидрогеназ.

В клетках также имеются аэробные флавиновые ферменты, осуществляющие перенос атомов водорода от субстрата к кислороду с образованием Н2О2.

Третий тип переносчиков электронов в дыхательной цепи представлен бензохиноновым соединением, носящим название кофермента Q или убихинон. Производное бензохинона имеет длинную изопреноидную цепь (для микроорганизмов n=6, для эукариот – 9). Убихинон свободно перемещается в липидной части внутренней мембраны митохондрий, и его быстрой диффузии способствует длинный неполярный хвост.

Механизм действия КоQ.При восстановлении убихинон, подобно флавиновым коферментам, присоединяет электроны и протоны. Он способен к одно- и двухэлектронному переносу, превращаясь в первом случае в полухинон КоQ . Н (семихинон), во втором в гидрохинон КоQ . 2Н.

Полухинон (КоQ . Н) Гидрохинон (КоQ . 2Н)

Кофермент Q имеет величину окислительно-восстановительного потенциала более положительную, чем у флавопротеидов (+0,02 В). В дыхательной цепи ферментов убихинон способен принимать водород от различных флавопротеидов:

ФМН . 2Н + КоQ = ФМН + КоQ . 2Н.

Система КоQ представляет собой узловой пункт, куда стекается водород, поступающий в дыхательную цепь от самых различных субстратов. Поэтому КоQ в дыхательной цепи представлен в более высоких концентрациях, чем большинство других переносчиков электронов. Хорошая растворимость в липидной фазе мембранных образований и относительно небольшой молекулярный вес придают коферменту свойство подвижного переносчика, взаимодействующего с фиксированными электронпереносящими белками.

Четвертый тип переносчиков электронов в дыхательной цепи от КоО. на кислород представлен группой различных гемосодержащих белков (гемопротеидов), называемых цитохромами. Отличаясь друг от друга структурой белкового компонента, все они имеют простетическую геминовую группу, близкую по своему строению к гему гемоглобина. В центре порфиринового кольца каждого тема находится ион железа. Группы цитохромов а, b и с отличается между собой сторением апофермента, строением простетической группы, характером связи между простетической группой и апоферментом.

Простетическая группа цитохрома с

Механизм действия цитохромов. В отличие от флавопротеидов, которые функционируют одновременно, перенося водород от различных субстратов на общий акцептор КоQ, цитохромы действуют последовательно, перенося электроны от КоQ на конечный акцептор — кислород. На участке дыхательной цепи между НАД и КоQ осуществляется двухэлектронный перенос, тогда как цитохромы, действующие на участке между КоQ и кислородом, переносят лишь по одному электрону. При этом происходит обратимое окисление-восстановление атома железа простетической группы, переходящего из Fе 2+ в Fе 3+ . Следовательно, на данном участке дыхательной цепи должны действовать две молекулы цитохромов.

В соответствии с величиной окислительно-восстановительного потенциала у разных цитохромов они располагаются в определенной последовательности в дыхательной цепи между КоQ и кислородом:

Читайте также:  Пероральные витамины при анемии

цит. b> цит. с1> цит. с > цит. а > цит. а3 > О2

+ 0,03 В +0,22В +0,24 В +0,25 В +0,39 В +0,82 В

В этой же последовательности происходит перенос электронов.

Переносчиком электронов во всех цитохромах (а, b, с) является железо, однако оно не способно отдавать электроны кислороду. Такой способностью обладает медь, которая принимает электроны от Fe в цитохроме а3 (цитохромоксидазный комплекс). Поэтому завершающей является реакция, катализируемая ферментом-цитохромоксидазой — сложным гемопротеидом, состоящим из 7полипептидных цепей, двух различных гемов, которые обозначаются как цитохромы а и а3, и двух атомов меди, принимающих участие в транспорте электронов: Сu 2+ + е =Сu + .

Первый из цитохромов на этом участке — цитохром а — реагирует с цитохромом с, принимает электроны и переносит их на цитохром а3, содержащий ионы меди, который способен прямо взаимодействовать с кислородом как конечным акцептором электронов.

«Активный» кислород присоединяет два протона из окружающей среды, образуя воду. В этой реакции кислород, как наиболее сильный окислитель, акцептируя электроны, создает основную движущую силу для переноса электронов вдоль дыхательной цепи. Кислород обеспечивает отток электронов из дыхательной цепи, в результате чего все выше расположенные переносчики поддерживаются в окисленном состоянии и оказываются способными принимать водород и электроны, поставляемые от окисляемых субстратов.

На различных участках дыхательной цепи наряду с названными основными переносчиками (флавопротеидами, КоQ и цитохромами) в транспорте электронов принимают участие белки, содержащие негеминовое железо, в молекуле которых железо связывается с белком-носителем через атом серы.

Обычно реакции окисления, связанные с отщеплением водорода от молекул органических субстратов при участии НАД или ФАД зависимых дегидрогеназ, обозначают как первичное окисление, а последовательность окислительно-восстановительных реакций в дыхательной цепи — как терминальное окисление.

Дата добавления: 2015-05-08 ; Просмотров: 6498 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

БИОЭНЕРГЕТИКА

С позиций термодинамики (см. главу 4) метаболизм представляет собой совокупность процессов, в которой реакции, потребляющие энергию из внешней среды (эндэргонические), сопрягаются с энергодающими (экзэрго-ническими) реакциями, что позволяет живым существам оказывать постоянное сопротивление нарастанию энтропии. Выяснение биохимических механизмов, приводящих к генерации различных форм биологической энергии, является предметом биоэнергетики. Источником энергии служат реакции, в ходе которых соединения, содержащие атомы углерода в высо-ковосстановленном состоянии, подвергаются окислению, а специальные дыхательные переносчики присоединяют протоны и электроны (восстанавливаются) и в таком виде транспортируют атомы водорода к дыхательной цепи.

Биологические виды энергии. Энергетические превращения в живой клетке подразделяют на две группы: локализованные в мембранах и протекающие в цитоплазме. В каждом случае для «оплаты» энергетических затрат используется своя «валюта»: в мембране это ΔμН + или ΔμNa + , а в цитоплазме – АТФ, креатинфосфат и другие макроэргические соединения. Непосредственным источником АТФ являются процессы субстратного и окислительного фосфорилирования. Процессы субстратного фосфорилирования наблюдаются при гликолизе и на одной из стадий цикла трикарбоновых кислот (реакция сукцинил-КоА —> сукцинат; см. главу 10). Генерация ΔμН + и ΔμNa , используемых для окислительного фосфорилирования, осуществляется в процессе транспорта электронов в дыхательной цепи энергосопря-гающих мембран.

Энергия разности потенциалов на сопрягающих мембранах может обратимо превращаться в энергию АТФ. Эти процессы катализируются Н + -АТФ-синтазой в мембранах, генерирующих протонный потенциал, или Na + -АТФ-синтазой (Na + -АТФазой) в «натриевых мембранах» алкалофиль-ных бактерий, поддерживающих ΔμNa + [Скулачев В.П., 1989]. На рис. 9.6 представлена схема энергетики живых клеток, использующих ΔμН + в качестве мембранной формы конвертируемой энергии. На схеме видно, что свет или энергия субстратов дыхания утилизируется ферментами фотосинтетической или дыхательной редокс-цепи (у галобактерий – бактериородопси-ном). Генерируемый потенциал используется для совершения полезной работы, в частности для образования АТФ. Будучи макроэргическим соединением, АТФ выполнняет функцию аккумулирования биологической энергии и ее последующего использования для выполнения клеточных функций. «Макроэргичность» АТФ объясняется рядом особенностей его молекулы. Это прежде всего высокая плотность зарядов, сконцентрированная в «хвосте» молекулы, обеспечивающая легкость диссоциации терминального фосфата при водном гидролизе. Продукты этого гидролиза представляют собой АДФ и неорганический фосфат и далее – АМФ и неорганический фосфат. Это обеспечивает высокую величину свободной энергии гидролиза терминального фосфата АТФ в водной среде.

Рис. 9.6. Взаимозаменяемость различных видов биологической энергии при выполнении клеточной работы [Скулачев В.П., 1989].

Красной стрелкой показана взаимозаменяемость в клетке двух клеточных видов энергии — АТФ и ΔμН + , для которых имеются также специальные буферные системы: креатинфосфат для АТФ (клетки животных) и градиент ионов Na (алкалофильные бактерии).

Тканевое дыхание и биологическое окисление. Распад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к выделению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом:

Впервые сущность дыхания объяснил А.-Л. Лавуазье (1743-1794), обративший внимание на сходство между горением органических веществ вне организма и дыханием животных. Постепенно становились ясными принципиальные различия между этими двумя процессами: в организме окисление протекает при относительно низкой температуре в присутствии воды, и его скорость регулируется обменом веществ. В настоящее время биологическое окисление определяется как совокупность реакций окисления субстратов в живых клетках, основная функция которых — энергетическое обеспечение метаболизма. В развитие концепций биологического окисления в XX в. важнейший вклад внесли А.Н. Бах, О. Варбург, Г. Крепс, В.А. Энгель-гардт, В.И. Палладин, В.А. Белицер, С.Е. Северин, В.П. Скулачев.

Потребление кислорода тканями зависит от интенсивности реакций тканевого дыхания. Наибольшей скоростью тканевого дыхания характеризуются почки, мозг, печень, наименьшей – кожа, мышечная ткань (в покое). Уравнение (2) описывает суммарный результат многоступенчатого процесса, приводящего к образованию молочной кислоты (см. главу 10) и протекающего без участия кислорода:

Этот путь отражает, по-видимому, энергетическое обеспечение простейших форм жизни, функционировавших в бескислородных условиях. Современные анаэробные микроорганизмы (осуществляющие молочнокислое, спиртовое и уксуснокислое брожение) получают для жизнедеятельности энергию, производимую в процессе гликолиза или его модификаций.

Использование клетками кислорода открывает возможности для более полного окисления субстратов. В аэробных условиях продукты бескислородного окисления становятся субстратами цикла трикарбоновых кислот (см. главу 10), в ходе которого образуются восстановленные дыхательные переносчики НАДФН, НАДН и флавиновые коферменты. Способность НАД + и НАДФ + играть роль промежуточного переносчика водорода связана с наличием в их структуре амида никотиновой кислоты. При взаимодействии этих кофакторов с атомами водорода имеет место обратимое гидрирование (присоединение атомов водорода):

При этом в молекулу НАД + (НАДФ + ) включаются 2 электрона и один протон, а второй протон остается в среде.

Во флавиновых коферментах (ФАД или ФМН), активной частью молекул которых является изоаллоксазиновое кольцо, в результате восстановления чаще всего наблюдается присоединение 2 протонов и 2 электронов одновременно:

Восстановленные формы этих кофакторов способны транспортировать водород и электроны к дыхательной цепи митохондрий или иных энерго-сопрягающих мембран (см. далее).

Организация и функционирование дыхательной цепи. В клетках эукариот дыхательная цепь расположена во внутренней мембране митохондрий, у дышащих бактерий – в цитоплазматической мембране и специализированных структурах – мезосомах, или тилакоидах. Компоненты дыхательной цепи митохондрий в порядке убывания окислительно-восстановительного потенциала можно расположить, как показано в табл. 9.1.

Молярные соотношения компонентов дыхательной цепи являются постоянными, ее компоненты встроены в митохондриальную мембрану в виде 4 белково-липидных комплексов: НАДН-КоQН2-редуктаза (комплекс I), сукцинат-КоQ-редуктаза (комплекс II), КоQН2-цитохром c-редуктаза (комплекс III) и цитохром а-цитохромокси-даза (комплекс IV) (рис. 9.7).

Если субстратом окисления служат α-кетокислоты, в переносе электронов на НАД + участвуют липоатсодержащие дегидрогеназы. В случае окисления пролина, глутамата, изоцитрата и других субстратов перенос электронов происходит непосредственно на НАД + . Восстановленный НАД в дыхательной цепи окисляется НАДН-дегидрогеназой, содержащей железосерный белок (FeS) и ФМН и прочно связанной с дыхательной цепью.

Рис. 9.7. Взаимное расположение компонентов дыхательной цепи с указанием мест фосфорилирования и специфических ингибиторов.

Читайте также:  Витамины для крепости ногтей

KoQ (убихинон), необходимый компонент дыхательной цепи, является производным бензохинона с боковой цепью, которая у млекопитающих чаще всего представлена 10 изопреноидными единицами (см. главу 7). Как любой хинон, KoQ способен находиться и в восстановленном, и окисленном состоянии. Это свойство определяет его роль в дыхательной цепи — служить коллектором восстановительных эквивалентов, поставляемых в дыхательную цепь через флавиновые дегидрогеназы. Содержание его значительно превосходит содержание других компонентов дыхательной цепи.

Дополнительным участником дыхательной цепи является железосерный белок FeS (негемовое железо). Он участвует в окислительно-восстановительном процессе, протекающем по одноэлектронному типу. Первый участок локализации FeS находится между ФМН и KoQ, второй — между цитохромами b и c1. Это соответствует тому факту, что со стадии ФМН путь протонов и электронов разделяется: первые накапливаются в митохондриальном матриксе, а вторые идут на гидрофобные переносчики — KoQ и цитохромы.

Цитохромы в дыхательной цепи выстроены в порядке возрастания окислительно-восстановительного потенциала. Они представляют собой гемопротеины, в которых простетическая геминовая группа близка к гему гемоглобина (у цитохрома b идентична). Ионы железа в составе гема при получении и отдаче электронов обратимо изменяют свою валентность.

В процессах тканевого дыхания наиболее важную роль играют цитохро-мы b, с1, с, а и а3. Цитохром а3 представляет собой терминальный участок дыхательной цепи – цитохромоксидазу, которая осуществляет окисление цитохрома с и образование воды. Элементарный акт представляет собой двухэлектронное восстановление одного атома кислорода, т.е. каждая молекула кислорода одновременно взаимодействует с двумя электрон-транспортными цепями. При транспорте каждой пары электронов во внутримитохондриальном пространстве может накапливаться до 6 протонов (рис. 9.8).

Строение дыхательной цепи интенсивно исследуется. В числе последних достижений молекулярной биохимии – установление тонкой структуры дыхательных ферментов с помощью рентгеноструктурного анализа. С помощью электронного микроскопа с наивысшим доступным в настоящее время разрешением можно «увидеть» структуру цитохромоксидазы (рис. 9.9).

Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи – утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии «обслуживается» соответствующим дыхательным переносчиком: НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи (см. рис. 9.7). В дыхательной цепи происходит дискриминация протонов и электронов: в то время как протоны переносятся через мембрану, создавая ΔрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание «заряжает» митохондриальную мембрану, а окислительное фосфорилирование «разряжает» ее.

Разность электрических потенциалов на митохондриальной мембране, создаваемая дыхательной цепью, которая выступает в качестве молекулярного проводника электронов, является движущей силой для образования АТФ и других видов полезной биологической энергии (см. рис. 9.6). Механизмы этих превращений описывает хемиосмотическая концепция превращения энергии в живых клетках. Она была выдвинута П. Митчеллом в 1960 г. для объяснения молекулярного механизма сопряжения транспорта электронов и образования АТФ в дыхательной цепи и быстро получила международное признание. За развитие исследований в области биоэнергетики П. Митчеллу в 1978 г. была присуждена Нобелевская премия. В 1997 г. П. Бойеру и Дж. Уокеру была присуждена Нобелевская премия за выяснение молекулярных механизмов действия главного фермента биоэнергетики -протонной АТФ-синтазы.

Рис. 9.9. Схематическое изображение цитохромоксидазы с разрешением 0,5 нм (а) и ее активного центра с разрешением 2,8 нм (б) [Tsukihara et al., Science.- 1 9 6 6 . — Vol. 269.- P. 1069] (Печатается с любезного разрешения редакции журнала).

Согласно хемиосмотической концепции, движение электронов по дыхательной цепи является источником энергии для транслокации протонов через митохондриальную мембрану. Возникающая при этом разность электрохимических потенциалов (ΔμH + ) приводит в действие АТФ-синтазу, катализирующую реакцию

В дыхательной цепи есть только 3 участка, где перенос электронов сопряжен с накоплением энергии, достаточным для образования АТФ (см. рис. 9.7), на других этапах возникающая разность потенциалов для этого процесса недостаточна. Максимальная величина коэффициента фосфорили-рования, таким образом, составляет 3, если реакция окисления идет с участием НАД, и 2, если окисление субстрата протекает через флавиновые дегидрогеназы. Теоретически еще одну молекулу АТФ можно получить в трансгидрогеназной реакции (если процесс начинается с восстановленного НАДФ):

НАДФН + НАД + = НАДФ + + НАДН + 30 кДж/моль. (4)

Обычно в тканях восстановленный НАДФ используется в пластическом обмене, обеспечивая разнообразные синтетические процессы, так что равновесие трансгидрогеназной реакции сильно сдвинуто влево.

Эффективность окислительного фосфорилирования в митохондриях определяется как отношение величины образовавшегося АТФ к поглощенному кислороду: АТФ/О или Р/О (коэффициент фосфорилирования). Экспериментально определяемые значения Р/О, как правило, оказываются меньше 3. Это свидетельствует о том, что процесс дыхания не полностью сопряжен с фосфорилированием. Действительно, окислительное фосфорилирование в отличие от субстратного не является процессом, в котором окисление жестко сопряжено с образованием макроэргов. Степень сопряжения зависит главным образом от целостности митохондриальной мембраны, сберегающей разность потенциалов, создаваемую транспортом электронов. По этой причине соединения, обеспечивающие протонную проводимость (как 2,4-ди-нитрофенол), являются разобщителями.

Несопряженное дыхание (свободное окисление) выполняет важные биологические функции. Оно обеспечивает поддержание температуры тела на более высоком уровне, чем температура окружающей среды. В процессе эволюции у гомойотерм-ных животных и человека сформировались специальные ткани (бурый жир), функцией которых является поддержание постоянной высокой температуры тела за счет регулируемого разобщения окисления и фосфорилирования в митохондриальной дыхательной цепи. Процесс разобщения контролируется гормонами.

В норме скорость митохондриального транспорта электронов регулируется содержанием АДФ. Выполнение клеткой функций с затратой АТФ приводит к накоплению АДФ, который в свою очередь активирует тканевое дыхание. Таким образом, клеткам свойственно реагировать на интенсивность клеточного метаболизма и поддерживать запасы АТФ на необходимом уровне. Это свойство называется дыхательным контролем.

За сутки человек потребляет около 550 л (24,75 моля) кислорода. Если считать, что в тканевом дыхании за этот период восстанавливается 40 г атомов кислорода (20 молей), а величину Р/О принять за 2,5, то в митохондриях должно синтезироваться 100 молей, или около 50 кг АТФ! При этом часть энергии окисления субстратов расходуется на совершение полезной работы, не превращаясь в АТФ (см. рис. 9.6).

Приведенные данные показывают, как важно организму поддержание процессов жизнедеятельности.

Свободное окисление. Одна из задач свободного (несопряженного) окисления – превращения природных или неприродных субстратов, называемых в этом случае ксенобиотиками (ксено – несовместимый, биос – жизнь). Они осуществляются ферментами диоксигеназами и монооксигеназами. Окисление протекает при участии специализированных цитохромов, локализованных чаще всего в эндоплазматическом ретикулуме, поэтому иногда этот процесс называют микросомальным окислением [Арчаков А.И., 1975].

В реакциях свободного окисления участвуют также кислород и восстановленные дыхательные переносчики (чаще всего НАДФН). Акцептором электронов является цитохром Р-450 (иногда цитохром b5). Окисление субстрата протекает по следующей схеме:

Механизм действия оксигеназ включает изменение валентности входящих в их состав ионов двухвалентных металлов (железа или меди). Диоксигеназы присоединяют к субстрату молекулярный кислород, активируя его за счет электрона атома железа в активном центре (железо при этом становится трехвалентным). Оксигена-ция протекает как атака субстрата образующимся супероксид-анионом кислорода. Одной из биологически важных реакций такого типа является превращение β-каро-тина в витамин А. Монооксигеназы требуют участия в реакции НАДФН, атомы водорода которого взаимодействуют с одним из атомов кислорода, поскольку только один электрон связывается с субстратом. К широко распространенным монооксигеназам относятся разнообразные гидроксилазы. Они принимают участие в окислении аминокислот, оксикислот, полиизопреноидов.

В процессе свободного окисления вследствие особенностей используемых цепей передачи электронов не происходит образования АТФ; биологическая роль этих процессов заключается в метаболизме ряда природных и ксенобиотических субстратов. В последнем случае свободное окисление выполняет важную функцию модификации чужеродных соединений. К последним относятся лекарственные средства, гербициды, продукты загрязнения окружающей среды, в возрастающем количестве попадающие в организм с водой, пищей и атмосферным воздухом. Как правило, они имеют гидрофобные свойства. Многие из них являются канцерогенными. Их гидроксилирование в ходе свободного окисления облегчает последующую деструкцию и выведение из организма (см. главу 12 и 13).

источник